.; Cordero-Rando, M.M.; Naranjo-Rodr uez, I.; Blanco-Ollero, E.; Esquivias-Fedriani, L. ES2195715, Spain, 2001. 34. Sun, K., Qiu, J.; Liu, J.; Miao, Y. Preparation and characterization of gold nanoparticles applying ascorbic acid as lowering agent in reverse micelles. J. Mater. Sci. 2009, 44, 754?58. 35. Bard, A.J.; Faulkner, L.R. Electrochemical Procedures: Fundamentals and Applications, 2nd ed.; John Wiley and Sons: New York, NY,USA, 2001. 36. Wang, M.; Xu, X.; Gao, J. Voltammetric studies of a novel bicopper complex modified glassy carbon electrode for the simultaneous determination of dopamine and ascorbic acid. J. Appl. Electrochem. 2007, 37, 705?10. 37. Salimi, A.; Alizadeh, V.; Hadadzadeh, H. Renewable surface sol-gel derived carbon ceramic electrode modified with copper complex and its application as an amperometric sensor for bromate detection. Electroanalysis 2004, 16, 1984?991. 38. Pournaghi-Azar, M.H.; Razmi-Nerbin, H. Electrocatalytic characteristics of ascorbic acid oxidation at nickel plated aluminum electrodes modified with nickel pentacyanonitrosylferrate films. J. Electroanal. Chem. 2000, 488, 17?four. 39. Ardakani, M.M.; Akrami, Z.; Kazemian, H.; Zare, H.R. J. Electroanal. Chem. 2006, 586, 31?8. 40. Fernandez, L.; Carrero, H. Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant-clay modified glassy carbon electrodes: Oxidation of ascorbic acid and uric acid. Electrochim. Acta 2005, 50, 1233?240. 41. Hosseini, M.G.; Faraji, M.; Momeni, M.M. Application of titanium oxide nanotube films containing gold nanoparticles for the electroanalytical determination of ascorbic acid. Thin Solid Films 2011, 519, 3457?461. 42. Cubillana-Aguilera, L.M.; Palacios-Santander, J.M.; Naranjo-Rodr uez, I.; de Hidalgo-Hidalgo Cisneros, J.L. Study in the influence of your graphite powder particle size on the structure of your sonogel-carbon components. J. Sol. Gel. Sci. Technol. 2006, 40, 55?4. 43. Keating, C.D.; Musick, M.D.; Keefe, M.H.; Natan, M.J. Kinetics and thermodynamics of Au colloid monolayer self-assembly undergraduate experiments in surface and nanomaterials chemistry. J. Chem. Educ. 1999, 76, 949?55. 44. Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandao, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken design and style: An option for the optimization of analytical techniques. Anal. Chim. Acta 2007, 597, 179?86. 45. Miller, J.C.; Miller, J.N. Estad tica Para Qu ica Anal ica; Addison-Wesley Iberoamericana: Wilmington, DC, USA, 1993; pp.Fmoc-NH-PEG4-CH2CH2COOH Purity 96?8.879883-54-2 Chemscene 46.PMID:23775868 Zuo, F.; Luo, C.; Zheng, Z.; Ding, X.; Peng, Y. Supramolecular assembly of -cyclodextrin-capped gold nanoparticles on ferrocene-functionalized ITO surface for enhanced voltammetric analysis of ascorbic acid. Electroanalysis 2008, 20, 894?99. 47. Shi, H.; Xu, Y.; Wang, Y.; Song, W. Assembly of ferrocenylhexanethiol functionalized gold nanoparticles for ascorbic acid determination. Microchim. Acta 2010, 171, 81?9. 48. Lin, Y.; Hu, Y.; Long, Y.; Di, J. Determination of ascorbic acid using an electrode modified with cysteine self-assembled gold-platinum nanoparticles. Microchim. Acta 2011, 175, 259?64.Sensors 2013,49. Xu, Q.; Leng, J.; Li, H.B.; Lu, G.J.; Wang, Y.; Hu, X.Y. The preparation of polyaniline/gold nanocomposites by self-assembly and their electrochemical applications. React. Funct. Polym. 2010, 70, 663?68. 50. Ragupathy, D.; Iyengar Gopalan, A.; Lee, K.-P. Electrocatalytic oxidation and determination of as.